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IN HONOR OF PROFESSOR GALEN STUCKY ON THE OCCASION OF HIS 65TH BIRTHDAY
Both the composition and structure of A1�xSn9�xBi11+xSe26

(A=K, Rb, Cs) were predicted on the basis of the homologous

series Am[M6Se8]m[M5+nSe9+n] (M=Sn, Bi) and targeted for

synthesis. A1�xSn9�xBi11+xSe26 adopts a new structure type

that fits the structural evolution of the homologous series.

# 2002 Elsevier Science (USA)

There is a strong interest in developing new chemical
concepts in designing new materials with superior thermo-
electric properties (1, 2). Our approach, which has been
outlined in detail elsewhere (3), is focused on complex
quaternary and ternary bismuth chalcogenides incorporat-
ing alkali metals. The examples of CsBi4Te6 (4), K2Bi8Se13
(5, 6), and K1.25Pb3.5Bi7.25Se15 (7) show that these explora-
tory investigations can lead to novel thermoelectric
materials with promising properties. Our investigations of
the quaternary system K/Sn/Bi/Se led to various com-
pounds, e.g., K1+xSn3�2xBi7+xSe14 (8), K1+xSn4�2x
Bi7+xSe15 (7), K1�xSn3�xBi11+xSe20 (8), K1�xSn4�xBi11+x

Se21 (9), and K1�xSn5�xBi11+xSe22 (10), which exhibit a
close structural and compositional relationship. This work
helped us to identify a grand homologous series of phases
with the general formula Am[M6Se8]m[M5+nSe9+n] (A=
alkali metal, M=heavy group IV and V element). The
quaternary selenides belong to this series which was
recognized after the structural characterization of these
compounds. Their structures are composed of [M5+nSe9+n]
(NaCl111-type) and [M6Se8]m (NaCl

100-type) units (11) of
variable dimensions defined by n and m, which link to
produce anionic frameworks with alkali metal (Am) filled
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tunnels. The terminology ‘‘homologous series’’ was given
by Magnéli (12) to characterize chemical series that are
expressed by general formulae and built on common
structural principles that are found in transition metal
oxides (13), as for example the Aurivillius phases
Bi2An�1BnO3n+3 (A=Na, K, Ca, Sr, Ba, Pb, Ln, Bi, U,
Th, etc. and B=Fe, Cr, Ga, Ti, Zr, Nb, Ta, Mo, W,
etc.) (14) and the Jacobson–Dion phases A[A0

n�1BnO3n+1]
(A=Li, Na, K, Rb, Cs, Tl, NH4, A

0=Ca, Nd, and B=Nb)
(15). The structures of the lamellar oxides are related to the
rutile and perovskite type, where the integer n determines
the thickness of the slabs. In contrast to these homologies,
the Am[M6Se8]m[M5+nSe9+n] series is characterized by two
integers n and m that can be changed independently and
therefore cause evolution of the structure in two different
dimensions. While the thickness of the NaCl100-type units
is controlled by m, the shape of the NaCl111-type units is
given by n. Our results in the A/Sn/Bi/Se system suggest
that it is ‘‘infinitely adaptive’’ (16). Changes of the ratio of
the reactants lead to new compounds with new structure
types instead of coexisting phases or solid solutions. The
homologous series Am[M6Se8]m[M5+nSe9+n] found in the
A/M/Bi/Se system (A=K, Rb, Cs and M=Sn, Pb) has
predictive character and generates easily charge-balanced
compositions for hypothetical compounds as members of
the series. Every member of this series represents a new
structure type. Here we report a new member of the grand
homologous series that in fact was targeted for synthesis
based on the general formula Am[M6Se8]m[M5+nSe9+n]
with m=1, n=9 predicting a compound with the formula
K1Sn9Bi11Se26. The novelity in this particular member lies
in its very thick layer nature of its [M5+nSe9+n] module.

A1�xSn9�xBi11+xSe26 (A=K, Rb, Cs) was prepared
according to the predicted composition by combining
A2Se, Bi2Se3, Sn, and Se (ratio 1:11:18:18) in a sealed
9
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evacuated carbon-coated quartz ampoule. The tube was
placed under the flame of a natural gas–oxygen torch until
the mixture melted and then removed from the flame to
solidify. A silver-gray ingot of plates was obtained after
annealing the reaction mixture at 8001C for 12 h. EDS
analyses of selected plates resulted in the average composi-
tions K1.1Sn9.5Bi11.6Se26, Rb0.9Sn9.4Bi10.9Se26, and
Cs1.3Sn8.9Bi11.3Se26.
K1�xSn9�xBi11+xSe26 (17) crystallizes in the monoclinic

space group P21/m in a new structure type as expected from
Am[M6Se8]m[M5+nSe9+n]. The crystal structure, shown in
Fig. 1, is assembled by two distinct building units of the
NaCl111-type and NaCl100-type, respectively, to form a
three-dimensional anionic framework that features tunnels
running along the b axis. These tunnels accommodate the
alkali ions. The structure of K1�xSn9�xBi11+xSe26 lies four
steps higher in the evolutionary ladder (see Fig. 2) from its
closest relative K1�xSn5�xBi11+xSe22 (m=1, n=5) (10)
that shows similarly arranged but differently sized funda-
mental building blocks. It will be interesting to investigate
if the missing members of the homologous series with n=6,
7, and 8 can be prepared and if the thickness of the
[M5+nSe9+n] layers can be further manipulated. In
K1�xSn9�xBi11+xSe26 five (Bi,Sn)Se6 octahedra wide and
three octahedra thick fragments of the NaCl111-type are
fused to stepped-shaped layers deployed over the bc plane.
The particular [M5+nSe9+n] building unit for n = 9
represents a section of a layer of the Bi3Se4 type. In
FIG. 1. ORTEP representation of the structure of K0.76Sn8.76Bi11.24
Se26 with atom labeling. View down the b axis.

FIG. 2. The homologous series Am[M6Se8]m[M5+nSe9+n] for m=1. A

member-generating scheme illustrating successive additions of MSe units

to a M5Se9 layer. Small white spheres; Se; large light-gray spheres, K;

medium-gray spheres, M.
contrast, the NaCl111-type units for n=3, 4, 5 are cuts
representing Bi2Te3-type layers. In K1�xSn9�xBi11+xSe26
the lone pairs of the Bi3+ and Sn2+ atoms are expressed in
a distorted environment (3+3 coordination) in the edge-
sharing (Bi,Sn)Se6 octahedra of the NaCl

111-type unit with
interatomic (Bi,Sn)–Se distances ranging from 2.726(8) Å
to 3.198(4) Å. The NaCl100-type [M6Se8] blocks in
K1�xSn9�xBi11+xSe26 are identical to those found in
K1�xSn3�xBi11+xSe20 (8), K1�xSn4�xBi11+xSe21 (9), and
K1�xSn5�xBi11+xSe22 (10), all of which are members of
the homologous series with m=1 and n=3, 4, and 5,
respectively. The NaCl100-type units are three (Bi,Sn)Se6
octahedra wide parallel to the direction of the NaCl111-type
layers and one octahedron high perpendicular to this
direction. The distorted tricapped trigonal prismatic sites
within the tunnels are partly occupied by K. A high
thermal displacement parameter indicates possible ‘‘rat-
tling’’ of K ions besides positional disorder.
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Preliminary charge transport measurements on poly-
crystalline ingots of K1�xSn9�xBi11+xSe26 reveal moder-
ately high electrical conductivity (570 S/cm) and Seebeck
coefficient (�110 mV/K) at room temperature, indicating
electrons to be the main charge carriers. These values are
promising and further investigations into its electrical
properties are under way. The compound is a narrow gap
semiconductor with a band gap of B0.50 eV (18).
In summary, the predictive character of the homologous

series Am[M6Se8]m[M5+nSe9+n] has been demonstrated by
the targeted synthesis of K1�xSn9�xBi11+xSe26 with m=1
and n=9, a new member of this series with fundamental
building units derived by different cuts of the NaCl lattice
perpendicular to the [111] and [100] direction, respectively.
In contrast to previously reported members,
K1�xSn9�xBi11+xSe26 crystallizes in a novel structure type
featuring a much thicker NaCl111-type layer that resembles
a section of a Bi3Se4-type layer instead of a Bi2Te3-type
layer as for the early members of the homologous series.
According to our results the system K/Sn/Bi/Se seems to be
infinitely adaptive (16) and worth further investigations to
prepare new predicted compounds.
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